
Numerics versus Symbolics

B Kutzler (Linz, Austria)
This lecture is a meditation about two concepts which, in the context of computer algebra, sometimes appear as opposing each other. 
1. Etymology
We start with the etymology of the two words. The word “numerics” comes from the Latin word “numerus” which means “part”, “number”, where “number” itself is derived from “part” as the result of a counting process.
The word “symbolics” comes from the Greek word “symbolon” which is composed of the two words “sym” (meaning “together”) and “ballein” (meaning “to throw”). Therefore, “symbolics” means “to put together”. “Putting together” can be for two reasons: It can be for constructing something, i.e. for creating a whole from parts. And it can be for putting things next to each other so that they can be compared
. For the Greek a “symbolon” was anything that would be comparable to the real thing whose place it took.
It is important to note that, strictly speaking, “5” also is a symbol for, say, the number of fingers of a hand, and “3.2” is a symbolic representation of the number obtained by dividing 32 by 10. But we don’t use “symbolics” in this narrow sense of the word here, because then all mathematics would have to be called symbolic mathematics.
 
The German mathematician C F Gauss said: “Mathematics is concerned only with the enumeration and comparison of relations.” With the above in mind, this means that mathematics is concerned only with numerics (“enumerate”) and symbolics (“compare”).

2. First thoughts
In a computer algebra system (we use Derive 6) enter 
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, simplify, then approximate.
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#1 and #2 are two different symbolic representations of this number. #3 is a numeric (decimal) representation of a ten-digit approximation of the same number
. Pragmatically, we can say that numeric mathematics is the mathematics on numbers (typically in decimal notation) such as #3. Symbolic mathematics is mathematics on everything else.
With a calculation such as the above on the screen of a symbolic calculator, Bert Waits once asked: “How do you recognize a mathematician?” and suggested the following answer: “A mathematician considers #2 a beautiful result.”  So we mathematicians like symbolics more than numerics ... although we know that numerics has its virtues too, and sometimes we cannot do without numerics. More about this later. For now we quote C F Gauss again, who has said that “a poor mathematical education often is demonstrated by a highly developed skill of mental arithmetic.” (In the context of this paper this could be rephrased as: “Poor symbolics often is demonstrated by good numerics.”)
As we said, expression #3 represents only an approximation of 
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. The precise decimal representation of this number has infinitely many digits and, therefore, cannot be written in a finite amount of time or in a universe with only a finite amount of matter. Therefore, practical numeric mathematics necessarily is an approximative mathematics.
3. Different kinds of mathematics
The integers I, the rational numbers Q, and the real numbers R are three important number sets in (school) mathematics. They possess useful properties. An important property is “closure”. It guarantees that one remains inside the domain when performing an arithmetic operations. I is closed w.r.t. addition, subtraction, and multiplication. Q and R are closed w.r.t. addition, subtraction, multiplication, and division (except for 0).  The “deficiency” of the integers is that division can take us outside the domain, for example when dividing 3 by 4.  

In Q (and R) we can divide 3 by 4. The result, ¾ or 0.75, is an element of Q (and R). If you divide 1 by 3, the result, 1/3 or 0.33333..., also is an element of Q (and R). But the latter example causes “trouble” when it comes to a “material” representation of the number in “practical” numeric mathematics, for example on a computer or a calculator, where numbers are represented in decimal notation with up to n digits (sum of digits before and after the comma). On calculators n often is 12 or 14.
On such a device, the result of the division of 1 by 3 cannot be represented, therefore an approximation obtained by cutting off (infinitely many) decimal places is used. For example 1/3 will be approximated by 0.33333333333333.

Floating point arithmetic uses decimal numbers with up to n digits total. Fix point arithmetic uses decimal numbers with up to n digits following the comma. Let’s look at the somewhat simpler case of fix point arithmetic. We formalized this as follows: Define R(n) to be the set of all real numbers with n decimal places. Then: 
I = R(0) ( R(1) ( R(2) (  ... ( R(n) (  ... ( Q ( R

I is closed w.r.t. addition, subtraction, and multiplication

R(n) is closed w.r.t. addition and subtraction

Q and R are closed w.r.t. addition, subtraction, multiplication, and division

Closure is an important property when it comes to the validity of identities. For example, the simple identity 
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 is valid in Q and R, but it is not valid in any R(n).  On most calculators this fact is hidden in “obvious” cases because numbers such as 0.999999999 are rounded to 1. What really happens can easily be visualized in Derive. The following is a graph of 
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 in R(1).
     [image: image6.png]



As you can see, the graph mostly is different from 0, hence for most values of x 
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. Screen images for R(2) and R(3) follow. Appendix 1 gives the code of the function used to produce these graphs.
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Another example is the identity 
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. In R(1) we have
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Also for this example, falsity of the identity can be visualized in Derive. The following picture shows the graph of 
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 in R(1). The result is different from zero for many values of x and y.
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With the help of Derive’s trace function one can easily find concrete examples in any R(n). We find 
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 as another example in R(1) (above picture) and 
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 in R(4) (below picture).
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None of the traditional computation tools such as calculators are suitable for the “classical” mathematics in Q or R. Only computer algebra systems with their symbolic representations of rational numbers as quotients of two integers, with fractional powers, with (, e, etc., are appropriate. 

By the way, the traditional tool for numerics is the abacus. Slide rules, four-function-calculators, scientific calculators and traditional (numeric) computer software are but sophisticated editions of an abacus. Computer algebra systems are a quantum leap. They are for symbolics what the abacus is for numerics.

It is perfectly fine to do mathematics in an “R(n) environment”, but students need to understand the consequences. They need to understand, ideally by experiencing it with appropriate examples, what can happen with identities such as the above. In Derive one can do approximate arithmetic with a specified number of digits. This is of great help when studying or demonstrating the effects in an “R(n) environment”.
We end this section by looking at the example 
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. Enter the expression, substitute 1 million (1 000 000) for 
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, then approximate.
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Looks like a clear zero. By default, Derive uses ten digits for approximations. If, instead, we approximate #2 with an accuracy of 15 digits, the result is very much different:
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In [Kutzler/Kokol-Voljc 2003], pages 72ff, we show how to use Derive 6 to investigate this example in detail and demonstrate how it happens that the two results are so different.

4. Numerics helps Symbolics (i): Limitations of Symbolics
Symbolics has its limitations. Some symbolic computations are impossible,
- because an algorithm cannot be found due to theoretic limitations,
- because an algorithm has not been found yet,
- because an implementation of the algorithm does not exists yet,
- because the execution of the algorithm requires too much time or space.
In some of these cases a numeric solution is better than no solution.
Examples are:
(a) It is impossible to find symbolic solutions (using known functions and constants) of general polynomial equations of degree higher than four.
     [image: image25.png]#4

#

#

#7

#8

x

5 4 3 2
NSOLVE(x + 2:x = 3:x + 4:x = 5:x = -6, x)

~0.2389321333 - 1.151781933.& v x = -0.2389321333 +
151781933.L v x = 0,9390814243 — 0.6271970073+1 v x =

9390814243 + 0.6271970073.& v x = -3.400298582




(b) For certain functions it is impossible to find closed form antiderivatives (using known functions and constants).
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(c) It is impossible to find, for certain classes of expressions, an algorithm which can decide the equivalence of two expressions.
(d) Constructng a Groebner basis has double exponential complexity. 

5. Numerics helps Symbolics (ii): The Creativity Spiral
When asked how he came upon his theorems, C F Gauss answered: “... through systematic, palpable experimentation.”
According to one of the epistemologically oriented theories one can visualize the main steps of (mathematical) discoveries as follows: Applying known algorithms produces examples. From the examples we observe properties, which are expressed as a conjecture. Proving the conjecture yields a theorem, i.e. guaranteed knowledge. The theorem‘s algorithmically usable knowledge is implemented in a new algorithm. Then the algorithm is applied to new data, yielding new examples, which lead to new observations, ...  
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This picture of a spiral which demonstrates the path of discovery of (mathematical) knowledge was proposed by Bruno Buchberger. A detailed description of Buchberger’s Creativity Spiral and references to related models can be found in the highly recommended (German language) book [Heugl/Klinger/Lechner 1996].
In this spiral we find three phases. During the phase of finding/experimenting one uses known algorithms to generate examples, then obtains conjectures through observation. During the phase of securing conjectures are turned into theorems through the method of proving, then algorithmically useful knowledge is implemented as algorithms. During the phase of applying one applies algorithms to new data.
In the finding phase often we have to find patterns in sequences of numbers. A well known example from the topic “proof by induction” is to find a closed form expression for 
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. For this particular example there exists an elegant solution which is based on an observation made by C F Gauss when he was still very young. Here we use a method which may be helpful also for other such problems. Clearly, there are many alternative approaches which will lead to the solution.

We compute the sum for a few (consecutive) values of 
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, for example 
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. The results are stored in the second column of the below table. In looking for a pattern we perform a simple factorization of the sums into two “obvious” factors – and store the result in the third column. The pattern is striking, but still a little hard to describe. By doubling the first factor we make it closer to the second factor (fourth column). Now we see that we always have products of two consecutive numbers. In the fifth column the two factors are arranged in ascending order, in the sixth column we divide by two again to compensate for the earlier doubling.
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	sort factors
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Now the pattern is obvious (at least for these 6 values of 
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) and we can come up with the conjecture 
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, which can easily be proved by induction.
This is an inductive process which leads from the special to the general, i.e. from numeric to symbolic.
The other two phases in the above spiral, securing and applying, are both deductive processes leading from the general to the specific. The applying phase is the reverse of the finding phase’s inductive process: You go from symbolic to numeric, for example by using the closed form expression to compute the sum of the first 100 natural numbers as 
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 (tribute to C F Gauss!).
The securing phase also is a deductive process, i.e. it leads from the general to the specific, but this is on the level of mathematical logic, where the general are the (inference) rules of logics and the specific is the mathematical theory in which the conjecture is formulated.
6. Symbolics helps Numerics (i): Preprocessing
Say we need to calculate the perpendicular bisector of two points 
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 and 
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. The steps of using the so called normal vector form are simple.
First we compute the midpoint of 
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 and 
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. This point, we call it 
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, is a point on the line we are looking for. Then we compute the vector from 
[image: image65.wmf]a

 to 
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. This vector, we call it 
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, is normal to the line we are looking for. Using 
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 and 
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 we can write the equation of the line using the normal vector form(ula) 
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. These mostly numeric computations are easily performed with paper and pencil, we use Dive:
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If we need perpendicular bisectors very often, for example because we do analytic geometry, the above procedure becomes tedious. It is always the same steps, only the numbers (i.e. the four coordinates of the two points) are different.
To save us from these many numeric applications of the above procedure we can apply it one time to a pair of symbolic points, i.e. points a and b with symbolic coordinates: 
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In a paper and pencil environment this “symbolic application” of the procedure is much more work than its meric application (and most students don’t like this kind of calculations). In a computer algebra system the extra effort of a symbolic application is done by the machine, so it is not any more difficult for the user. Below is the computation performed in Derive.
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We obtain 
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 as the equation of the perpendicular bisector of 
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. Now for any new points 
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 we can simply substitute the coordinates into this expression and obtain the resulting equation of the line.
The one-time investment of a symbolic application saves a potentially infinite number of numeric applications. This method can be considered a “preprocessing”.

7. Symbolics helps Numerics (ii): The Pentium-Bug
On Oct 19, 1994 Dr. Thomas R Nicely, professor of mathematics at Lynchburg College discovered what later has become known as the Pentium Bug. After lots of testing he found that 824,633,702,441 divided by itself gave 0.999999996274709702 – instead of 1. Later it was found that this is true for all numbers between 824,633,702,418 and 824,633,702,449.
This is the well known part of the story. Here comes the unknown part
: Shortly after the Pentium Bug was found, the authors of Derive, David Stoutemyer and Albert Rich from Soft Warehouse, Inc., sent a complimentary copy of Derive to Prof. Nicely. After several weeks Thomas Nicely phoned up David. He apologized for taking so long to respond, but after he became famous for having found the Pentium Bug he received special protection from the police and all mail sent to him had to undergo a screening by a security team. Therefore he got the package with some delay. He thanked David for the copy of Derive and said that, in fact, he owns a copy of Derive and that Derive’s ability to do approximate arithmetic to a specified number of digits (our above “R(n)-arithmetic”) has helped him to locate the cause of the problem in the Pentium chip.

Therefore, the bug in the numeric methods of the Pentium chip was discovered with the help of a symbolic tool.
8. More from etymology
In section 1 we said that “numerics” comes from “numerus” (= “part” (of a whole), “number”) and “symbolics” comes from “symbolon” (= “to put together”, “to compare”). In mathematics we use only the meaning “numbers” for “numerics”. “Symbolics”, on the other hand, can denote either a composition (of parts) or something which takes the place of something else (and, hence, is comparable to it).
Working with decimal representations of numbers is what we call “numeric”. A variable, for example x, which takes the place of something, we call “symbolic”. Another example of something “symbolic” is 
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 stands for a whole which is composed of (infinitely many) parts, namely the pairs 
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 taken from a certain set. When we take 
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 from the real numbers, these pairs can be interpreted as points in the plane forming a parabola.

A famos quote from the Greek philosopher Aristoteles says: “The whole is more than the sum of its parts”. In the above example, the points of the parabola are the parts, the parabola is the whole. The parabola is composed of infinitely many points, so it is the sum of its parts – but it is more than that, because it has properties, which none of the points has or which none of all possible subsets of the points has. Such properties are continuity, symmetry, or simply the fact that the points of the parabola are exactly those points of the plane whose coordinates satisfy the equation
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Instead of “symbolic computation” we often see “algebraic computation”. How are these two words related? The word “algebra” comes from the title of a work written around 825 by the Arabic mathematician known as al-Khowarizmi entitled “al-jebr w’al-muqabalah”. In Arabic “al-“ is the definite article “the”. The first noun in the title is “jebr”, which means “reunion of broken parts”, from the verb “jabara” which means “to reunite, to consolidate”.
 The second noun in the book title is from the verb “qabala”, with meanings that include “to place in front of, to balance, to oppose, to set equal.” 
Together these two words describe some of the manipulations so common in algebra.

9. Pythagoras’ View of Mathematics
Pythagoras of Samos (580 – 496 BC) was a contemporary of Confuzius (551 – 479 BC) and Prince Gautama, the Buddha, (560 – 480 BC). He is considered one of the wisest men of antiquity. Pythagoras lived on Samos, a Greek island. The tyrant Polycrates took power in 538 BC (first with his brother, then alone in 532 BC). Pythagoras disagreed with his rule and left the island 532 BC for South Italy, where he started a school in Croton. 

Pythagoras used three disciplines of teaching:

- Nutrition for cleaning and developing the physical body

- Music for cleaning and developing the emotional body (the soul)

- Mathematics for cleaning and developing the mental body (the mind)

Pythagoras had two ideals: Freedom and philosophy. For him, mathematics was the discipline to acquire both as I will explain in the sequel. Pythagoras regarded the three bodies (physis, emotio, ratio) to be closely connected with each body influencing the other two. Therefore he cleaned and developed all three bodies for best results.
“Philosophy” comes from the Greek words “philein” (meaning “to love”) and “sophia” (meaning “wisdom”). “Mathematics” comes from the Greek word “mathema” (meaning “science”), which originates from “mathesis” (meaning “knowledge”). Therefore, in the true sense of the word, mathematics is the only science we have.
 Pythagoras said: “Every man has been made by God in order to acquire knowledge and contemplate.” So we should do mathematics in order to acquire knowledge and we should contemplate in order to transform our knowledge into wisdom. This makes mathematics the path to philosophy.
Next about freedom. According to Pythagoras, the true world of our mind is non-material. However, because of our physical body our mind collects only material experiences. Therefore, our mind is “imprisoned” by the material. Physically we never can be free, nor can we be free emotionally. But mentally we can be free, if we break out of the chains of our mind’s material imprisonment. Mathematics can help with this, because the objects of mathematics are between material and immaterial.
Look at the example of a point. As a mathematical object, a point is infinitely small. But there is nothing like this in the natural (material) world. However, there are objects (such as a point drawn with a pen, or an atom or subatomic particle) which come close to it for they are very, very small. Another example is a line, which, in mathematics, is infinitely thin and infinitely long. Also such a line does not exist in the material world, but there are objects (like a line drawn with a pencil and a ruler on a piece of paper) which comes somehow close to it. When we talk about a triangle in mathematics, we have something “in mind”, which can be considered an abstrac​tion of triangular objects in natur or drawn on paper. Alternatively we can say that a triangle which we draw is a realization of a mathematical triangle.
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Mathematical objects are like a rung on a ladder from the material world to the immaterial world. Therefore, doing mathematics helps our mind to shake off the confinements of the material experiences and raise above the material world.
Now you probably wonder what this has to do with “numerics” and “symbolics”. 

Pythagoras said: “Number is the within of all things.” The “things” are the objects in the natural (material) world. For Pythagoras the numbers are representations of these natural objects. This is why we call them “natural numbers”. The “natural numbers” are the most material of all mathematical objects insofar as they are very close to material things. (“5” is a mathematical object very close to the five fingers of a hand.) From the natural numbers we construct new objects which may be less material, such as the negative numbers. (“-5” is not so easily recognized in the material world.)

Putting parts (remember: “part” = “number”) together as a new whole (remember: “whole” = “symbol”) is a basic technique in mathematics which leads to “less material” = “less numeric” =  “more symbolic” = “more immaterial” objects.
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If we look at mathematics as (part of) a ladder from the material world to the immaterial world, “numerics” is the lower end (the first rung) on it, “symbolics” are the higher rungs. This means that the higher a person’s mathematical education, the higher on the ladder (s)he reaches. If you are high on the ladder there is the danger to lose contact to he material world. The picture of an absentminded mathematics professor appears ... However, the really great minds are those who are “tall” enough to stand with both feet on the material ground and reach with their hands high on the ladder.
This picture is also supported by the following quote from Nikolaus of Cues Cusanus, a German theologian and humanist who lived 1401-1464: “If there is no other path to the divine then through symbols, we should use mathematical symbols for they possess indestruc​tible certainty. Knowledge about the divine is out of reach for the mathematically illiterate.”
The following table summarizes our philosophical mediation:

	number
	symbol

	more material
	less material

	material
	immaterial

	finite
	infinite

	physical
	spiritual


When “number is the within of all things” (Pythagoras), then symbolics can be considered the within of mathematics. The Scottisc mathematician Eric Temple Bell (1883 –1960) said: “Any impatient student of mathematics or science or engineering who is irked by having algebraic symbolism thrust upon him should try to get along without it for a week.”
We can’t do mathematics without symbolics, but also we shouldn’t do mathematics without numerics either for the numbers connect mathematics with the real world. 
Closing Remark
I do hope that you found the contents of this presentation trivial, because, speaking with C F Gauss: “When a philosopher says something that is true then it is trivial. When he says something that is not trivial then it is false.”
References
H Heugl, W Klinger, J Lechner, 1996: Mathematikunterricht mit Computeralgebra-Systemen (Ein didaktisches Lehrerbuch mit Erfahrungen aus dem österreichischen DERIVE-Projekt). Bonn:Addison-Wesley, 307 pages, ISBN 3-8273-1082-2.

B Kutzler, V Kokol-Voljc, 2003: Introduction to Derive 6. Hagenberg: Soft Warehouse GmbH&CoKG, 268 pages, ISBN 3-9500364-5-8.
Appendix 1

     [image: image88.png]#

#2

#

#4

#5

nodi = 1

intgr(x) =
IF INTEGER?(x)
x
If x 2 0
FLOOR(Cx)
FLOORG) + 1

nodi
intgr(<:10 )
e —
nodi
10

1
testl(n) = r[ [—]-r(n)] -1
n

testl(n)




Appendix 2

     [image: image89.png]#1

#2

#

#4

#

#6

nodi i= 1

intgr(x) =
IF INTEGER?(x)
x
If x 2 0
FLOOR(Cx)
FLOORG) + 1

rodi
dntgr(x«10 )
) —
rodi
10

2 2
test(x, y) = [r(r(X) d = r(ry) Dy r(CrGx) + r(y) e (r(x) - r(y)))}

2 2
testdiff(x, y) o= r(rGx) ) - r(r(y) ) - rCrGd + r() (G - r()

testdiffCx, y)




� The word “compare” is composed of the two Latin words “com” = ”cum” (meaning “together”) and “par” (meaning “equal”).


� In fact, in the narrow sense of the word “symbolic” one could consider mathematics the science of symbols.


� Compare our respective comment from section 1.


� Personal communication with David Stoutemyer.


� This corresponds to the one meaning of the Greek word “symbolon” = “to put together”.


� Natural sciences are sciences insofar as they use the methods of mathematics.
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