
CODING TAKES NUMERICAL ANALYSIS AND SIMULATION TO THE NEXT LEVEL – L.A.A. Blomme 
1 

CODING TAKES NUMERICAL ANALYSIS AND SIMULATION TO THE NEXT LEVEL 
L.A.A. Blomme – European School Brussels 3 

TI-symposium, Brussels – 7/10/2017 

 
Programming can be done in many ways: in a notes page, a spreadsheet or by coding 

a programme or a function in TI-basic in the programme editor of the TInspire CAS CX. 
 
1. THE SUM OF TWO DICE THROWS 

 
TNS-file: 1.1 sum of 2 dice 

We are going to simulate the throwing of two dice and observe the distribution of the 
sums obtained. We are going to throw the two dice 10 times, 20 times, 50 times and 100 
times, first in a spreadsheet and then using a program. 
 
1.1. First method: in a spreadsheet 
 

We create 4 lists in the spreadsheet. 

• In the cell A1, write “=randint(1,6)+randint(1,6)·”. 
Then, select the cell A1 then “/b Fill” (10 cells). 
Name the column “s2dice10”. 

• Place the cursor in the second column second row (grey) and write 
“seq(randint(1,6)+randint(1,6),n,1,20)”. 
Name the column “s2dice20”. 
Repeat the operation for n = 50 and n = 100. 
 

 
 

 

1 



CODING TAKES NUMERICAL ANALYSIS AND SIMULATION TO THE NEXT LEVEL – L.A.A. Blomme 
2 

We add a data and statistics page and split it into 4 parts and make a quick graph of 
the data in the spreadsheet. 
We can graph the four results on the same page.  

• “/¿~5: Page Layout – 2: Select Layout – 8: Layout 8”. 

• In b, choose “5: Add Data & Statistics”. 

• Move the cursor to the middle bottom of the page and choose s2dice10. 

• Do the same for the other three graphs. 
 

 
 
 
1.2. Second method: programming 
 

The first possibility would be to 
write a program that displays the 
results. There is however nothing 
much we can do with the displayed 
data. 

• Go to the page containing 
the program sum2dice(). 

• Type in the left window: 
sum2dice(50) 

The program is executed and the 
results are displayed in the 
calculator window. 

 
 



CODING TAKES NUMERICAL ANALYSIS AND SIMULATION TO THE NEXT LEVEL – L.A.A. Blomme 
3 

A more clever solution is to write a function in TI-basic that generates a list containing 
the results of the simulation. 
 

 
 

In a calculator window, we define the list of possible sums. Applying the new function 
sumof2dice() 3 more lists of simulation data for n=24, 48 and 800 can be created. 
 

 
 
 
 
 
 
 
 
 
 



CODING TAKES NUMERICAL ANALYSIS AND SIMULATION TO THE NEXT LEVEL – L.A.A. Blomme 
4 

 
2. TOYS IN BOXES OF CEREAL 

 
TNS-file: 2.1 cereal 

 In this problem, every box of cereals bought from a 
shop contains one toy from a selection of six different 
toys; the toys being evenly distributed among the cereal 
boxes. The simulation allows an investigation of the 
number of boxes of cereal one might have to buy in 
order to complete the set of 6 toys. 

The simulation uses the function randint(1,6) to 
generate random integers 1-6. In the part of the 
investigation the randint function is used to simulate 
manually the number of boxes which must bought and 
in the second part a simple program is used to automate 
the simulation. The simulation is run 60 times in order to obtain some summary statistics for 
the number of cereal boxes which must be bought. Later the effect of the introduction of a 
bias in the distribution is considered. 

 
2.1 First method: a manual simulation 
 

Use RANDINT(1,6) to simulate the choice of 
a toy. Type the command only once and press 
enter to repeat the same instruction. How 
many boxes of cereals do you have to buy to 
collect all 6 toys? What is the average number 
of boxes a customer has to buy? 
 

Toy 1 Toy 2 Toy 3 Toy 4 Toy 5 Toy 6 sum 

       

 
2.2 Second method: programming 
 

We code a function cereal() to simulate this problem. Once the new function is defined 
we can use it in any application: a calculator sheet as well as a spreadsheet. 
 

 



CODING TAKES NUMERICAL ANALYSIS AND SIMULATION TO THE NEXT LEVEL – L.A.A. Blomme 
5 

Using the command =SEQ(cereal(),s,1,50) we create the list “box” containing 50 
simulations.  

 

• Click Statistics; Stat Calculations and 1. One variable statistics. 
 To repeat all calculations in the spreadsheet, press ctrl+R.  
 

 
 
 
2.3 a new distribution of the toys 
 

The 6 different toys are no longer uniformly distributed. Toy_6 appears in only 5 % of 
the boxes. The other toys appear in 19% of the boxes. 

How many boxes of cereal do you have to buy to have all 6 toys? 
We code a function cerealbis() to simulate the new problem. 

 

 
 



CODING TAKES NUMERICAL ANALYSIS AND SIMULATION TO THE NEXT LEVEL – L.A.A. Blomme 
6 

We can now compare the 
two types of distribution of the 
toys. What happens to the 
average number of boxes of 
cereals a customer has to buy to 
get all the toys, if they are no 
longer uniformly distributed? 
 
 
 
 
 
 
 

 
 
 
2.4 a variable number of toys 
 

TNS-file: 2.2 cereal 2 

In this extended problem, every box of cereals bought from a shop contains one toy from 
a selection of a variable number n of different toys; the toys being evenly distributed among 
the cereal boxes.  

The function cereal(n) is a more flexible and general version of the function cereal(). 
 

 



CODING TAKES NUMERICAL ANALYSIS AND SIMULATION TO THE NEXT LEVEL – L.A.A. Blomme 
7 

We can still extend the complexity of the problem with a variable number of toys n, a 
variable probability of toy_n and a variable number k of simulations. 
 

 
 

 
 



CODING TAKES NUMERICAL ANALYSIS AND SIMULATION TO THE NEXT LEVEL – L.A.A. Blomme 
8 

 
 
 
 
 
 
 
 
3. RIEMANN SUM 

 
TNS-file: 3.1 Riemann sum 

A Riemann sum is a certain kind of approximation of a definite integral by a finite sum. The 
sum is calculated by dividing the region up into rectangles and adding these rectangles 
together. 

Because the region filled by the small shapes is usually not the same shape as the region 
being measured, the Riemann sum will differ from the area being measured. This error can be 
reduced by dividing up the region more finely, using smaller and smaller shapes. As the shapes 
get smaller and smaller, the sum approaches the Riemann integral. 
 We use and compare three different methods of Riemann summation with partitions 
of equal size. The interval [a,b] is therefore divided into n subintervals. 

• Left Riemann sum: the function is approximated by its value at the left-end point of 
each subinterval. 

• Right Riemann sum: the function is approximated by its value at the right-end point of 
each subinterval. 

• Middle Riemann sum: the function is approximated by its value at the midpoint of each 
subinterval. 

 

https://en.wikipedia.org/wiki/Root-finding_algorithm


CODING TAKES NUMERICAL ANALYSIS AND SIMULATION TO THE NEXT LEVEL – L.A.A. Blomme 
9 

3.1 a special case: a positive monotonically increasing function 
 

As an introduction to the Riemann sum we use the positive, monotonically increasing 

function ( ) 1.25xf x  in the interval [1,9]. 

In this case, the left Riemann sum amounts to an underestimation. The rectangles have a 
height equal to the minimum value of the function in each subinterval. The right Riemann sum 
amounts to an overestimation due to rectangles with a height of the maximum value of the 
function in a subinterval. 

The third method, using an average value of the function in each subinterval amounts to 
a better estimation. 
 

 
 

 
 

As n increases, the shapes get smaller and smaller and the sum approaches the Riemann 
integral. To visualise this, we create 3 lists: left Riemann sum, right Riemann sum and middle 
Riemann sum. Every list is displayed as a dynamic scatterplot, adapting to the value of n. 
 

 

https://en.wikipedia.org/wiki/Root-finding_algorithm


CODING TAKES NUMERICAL ANALYSIS AND SIMULATION TO THE NEXT LEVEL – L.A.A. Blomme 
10 

3.2 a more general approach 
 

To calculate the three different types of 
Riemann sum we write one function Riemann() 
with two parameters: l ( = left), r ( = right) or m 
( = middle) and n ( = number of subintervals ).  

We assume that the function f(x) and the 
interval [a,b] are predefined: e.g.

( ) 2sin( ) 1f x x  in the interval [1,8]. 

 
 

 
 
 The difference between the 3 types of Riemann approximations can be shown on the 
next graphs page. Click the sliders rl ( Riemann left ), rm ( Riemann middle ) and/or rr ( Riemann 
right ) to hide or display the approximating Riemann functions or rectangles. 
 

 
 
 A spreadsheet can be used to create 3 lists, one for each of the different types of 
Riemann sum, every time using the new function Riemann(). These lists can be graphically 
represented as dynamic scatterplots, automatically adapting to changing values of n, a or b. 
 

https://en.wikipedia.org/wiki/Root-finding_algorithm


CODING TAKES NUMERICAL ANALYSIS AND SIMULATION TO THE NEXT LEVEL – L.A.A. Blomme 
11 

 
 
 To apply this approach to another function all we need to do is change the definition 
of the function on the first notes page. 
 

 
 
 
 
 
4. SOLVING NON-LINEAR EQUATIONS – NEWTON’S METHOD 

 
TNS-file: 4.1 newton 

In numerical analysis, Newton's method (also known as the Newton–Raphson method),  
is a method for finding successively better approximations to the roots (or zeroes) of a real-
valued function. It’s a nice example of a root-finding algorithm: ( ) 0f x  . 

The method starts with a function f defined over the real numbers x, the 

function's derivative f ′, and an initial guess 0x  for a root of the function f. If the function 

satisfies the assumptions made in the derivation of the formula and the initial guess is close, 

then a better approximation 1x  is 0
1 0

0

( )

'( )

f x
x x

f x
  . 

Geometrically,  1,0x  is the point of intersection of the X-axis and the tangent line of the 

graph of f at  0 0, ( )x f x . 

The process is repeated as 1

( )

'( )

n
n n

n

f x
x x

f x
    a fixed number of times or until a sufficiently 

accurate value is reached. 

https://en.wikipedia.org/wiki/Numerical_analysis
https://en.wikipedia.org/wiki/Root_of_a_function
https://en.wikipedia.org/wiki/Real_number
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Root-finding_algorithm
https://en.wikipedia.org/wiki/Real_number
https://en.wikipedia.org/wiki/Derivative
https://en.wikipedia.org/wiki/Tangent


CODING TAKES NUMERICAL ANALYSIS AND SIMULATION TO THE NEXT LEVEL – L.A.A. Blomme 
12 

4.1 Newton’s method - a manual approach 
 

In a notes page we define the function and the value of 0x . We calculate the point of 

intersection of the tangent line of f at  0 0, ( )x f x . The tangent line is also displayed in the graphs 

page. This process is repeated. 
 

 
 

 
  

 
 

Newton’s method can be easily repeated for another equation / function. Using a notes 
page to perform all the calculations has a big advantage: all calculations in all linked math 
boxes are automatically updated every time a math box is changed. This is the simplest 
attempt to programming. 

All we need to do to apply Newton’s method to another equation, is change the 

definition of the function in the notes page and chose a proper value 0x  for the approximation 

process. 



CODING TAKES NUMERICAL ANALYSIS AND SIMULATION TO THE NEXT LEVEL – L.A.A. Blomme 
13 

 
 

 
 
 
4.2 Newton’s method – in a spreadsheet  
 
 We can use a spreadsheet to calculate a list of approximating values with the general formula 

1

( )

'( )

n
n n

n

f x
x x

f x
     

• Define as usual, f(x) in a notes page. 

• In the first column of the spreadsheet, we count the number of steps performed. 

• Cell B3 contains the starting value 0x . 

• Cell C3 contains f(a). In step 7 this value is almost 0. Therefore 7x  is an excellent 

approximation of the root. 

• Cell D3 contains the formula for the calculation of 0
1 0

0

( )

'( )

f x
x x

f x
   or 

 

( 3)
3

( ) | 3

f B
B

d
f x x B

dx





 

• On the next line of the spreadsheet the value of D3 is copied into cell A4. 
• Repeat the process for columns C and D, etc. 

 

 



CODING TAKES NUMERICAL ANALYSIS AND SIMULATION TO THE NEXT LEVEL – L.A.A. Blomme 
14 

Since f(x) is defined in 
a notes page, to repeat 
Newton’s method for another 
function, simply change the 
definition of the function in 
the notes page and adapt the 

starting value of 0x  in the 

spreadsheet e.g. 0 1x   and 

( ) 2 tan( )f x Arc x  . 

 
 
 

 Although this approach is very fast ( in the previous examples only a few 
approximation steps were needed ) it does 

not always converge, e.g. 0 2x   and 

( ) 2 tan( )f x Arc x  . See graphs page. 

 

 
 
 
4.3 Newton’s method – programming, a first attempt  
 

We write a program newton() that requests the starting value a and the number of 
approximations to be done. The function f(x) is already defined in a calculation page. 
 

 
 



CODING TAKES NUMERICAL ANALYSIS AND SIMULATION TO THE NEXT LEVEL – L.A.A. Blomme 
15 

 We can execute the program newton() in a calculation page or any other page of the 
same problem.  
 
 
4.4 Newton’s method – programming, an improved version 
 

We write a program newtonraphson() that requests the starting value a and the 
tolerance levels for x and f(x).  

• This version checks for every step of the process if  ( ) | 0
d

f x x a
dx

 
  

 
  

• The approximation process is terminated if at least one of the tolerance levels is 
met. 

• No more than 30 steps are performed. 

• As before, the function f(x) is already defined in a calculation page. 
 

 
 

   



CODING TAKES NUMERICAL ANALYSIS AND SIMULATION TO THE NEXT LEVEL – L.A.A. Blomme 
16 

5. PROBLEM SOLVING – an example 

 
TNS-file: 5.1 euro 

Given a certain amount in €, how many banknotes and 
coins do you need to exactly match this amount? There are of 
course many answers possible unless you do it with as few 
notes and coins as possible. 

We can of course solve this problem with a spreadsheet. It 
is a nice opportunity to put the function mod() to work. 
 

 
 

An alternative method is to code a special programme also using the mod() function. Not 
only is this more efficient but it also allows us to create a more user friendly output. 
 

 
 



CODING TAKES NUMERICAL ANALYSIS AND SIMULATION TO THE NEXT LEVEL – L.A.A. Blomme 
17 

 
 
 
 
 
 
 
 


