General constructions

1. Construct a triangle $A B C$.

a) Label the corner points;
b) Colour the surface ;
c) Measure the length of the line segment $A B$;
d) Measure the area of triangle $A B C$;
e) Measure the size of angle A.

2. Construct 3 triangles

a) $A B C$ which is right-angled ;
b) $D E F$ which is isosceles;
c) GHI which is equilateral.

3. Construct a square $A B C D$ with sides of 5 cm .

a) Calculate the surface with the TI ;
b) Change the length of the sides into 10 cm ;
c) Measure the length of the line segment $A B$ and name it variable a ;
d) Use the slider to change the measurements of the square.

Transformations

1. Draw a random quadrangle $A B C D$ and a vector $\overrightarrow{P Q}$.
a) Move the quadrangle according to the vector $\overrightarrow{P Q}$;

Delete vector $\overrightarrow{P Q}$ and draw a line a.
b) Reflect the quadrangle relative to the line a;
c) Connect original and image with each other through a dotted line.

2. Draw a triangle $A B C$ and a point of rotation O.
a) Insert the angle of rotation ' 60° ' as text ;
b) Rotate triangle $A B C$ about an angle of 60°.

3. Draw a triangle $A B C$ and the centre of the dilatation 0 .
a) Insert scale factor ' 2 ' as text ;
b) Carry out the magnification ;
c) Compare the circumference and the surface of both triangles ;
d) Name the variable factor k, and use the slider to draw a conclusion about the proportions of the circumference and the surface.

Pythagoras Theorem

1. Draw a right-angled triangle $A B C$ with $|\hat{B}|=90^{\circ}$ and construct a square on each side of the triangle.

2. Measure the area of each square and name the result on side $[A B] \rightarrow \mathrm{a},[B C] \rightarrow$ a 2 and $[A C] \rightarrow \mathrm{a} 3$.
3. Open the application NOTES and check Pythagoras Theorem.

Analyze a graph with the TI-Nspire CAS

Given the function $f(x)=x^{4}+7 x^{3}+2 x^{2}-28 x-9$
a) Draw the graph of f and make sure that you have a suitable window ;
b) Find the coordinates of the points of intersection with the axes ;
c) Find the coordinates of the extremes of f;
d) Calculate the area in the fourth quadrant enclosed by the function of f and the two axes ;
e) Give the equation of the tangent to f at the point where $x=-5$.

Given the function $g(x)=-2 x^{2}+3 x+10$
f) Find the coordinates of the points of intersection between f and g.

Do this once - graphically

- by solving the equation (add calculator)

An enlargement combined with a function

Given the function $\quad f: y=\frac{x^{2}+4 x+3}{(x-1)^{2}}$
a) Draw the graph of f and make sure that you have a suitable window ;
b) Define Q and R as the points of intersection with the x-axis and S as the point of intersection with the y-axis ;
c) Define P as the point of intersection of the normals to the curve at Q and R;
d) Draw the polygon $P Q R S$ and calculate the area.

Apply an enlargement with center Q and scale factor \mathbf{k} to the polygon.
e) Find \mathbf{k} so that S^{\prime} is a point on the curve in the first quadrant and calculate the area of the enlarged polygon.

