Welcome to the webinar René Descartes would code a Rover if he could

Thursday 31st March 2022

Speaker T³: Alexandre Técher La Renaissance Highschool (Reunion island)

Alexandre.Techer@ac-reunion.fr

Overview:

- René Descartes brief introduction
- Main ideas and works
- Focus on Light refraction
- Descartes would code a Rover

Hardware and software:

Ti-innovator Hub

Ti 83 premium CE Python Edition

Ti Rover

René Descartes

Sunday **31st March** 1596

Descartes (FR)

Friday 11th February 1650

A crucial meeting

"To tell you the truth, it was really you who got me out of my idleness and made me remember things I once learned and had nearly forgotten: when my mind wandered from serious [mathematical] matters, you put

me back on the right path."

RENÉ DESCARTES 1619

René Descartes

Isaac Beeckman

1637

Discourse on the Method of Rightly Conducting the Reason, and Searching for Truth in the Sciences

Various models to understand the properties of light

Explanations of natural phenomena (wind, snow, rainbow...)

Idea of uniting Algebra and Geometry: birth of analytic geometry

1643

Marin Mersenne

Girard Desargues

Blaise Pascal

René Descartes

Father of Modern Philosophy

One of the first of the modern school of Mathematics

One of the key
figures in the
scientific revolution
of the 17th

Four main precepts

- Accept nothing as true that is not self-evident.
- Divide problems into their simplest parts.

- Solve problems by proceeding from simple to complex.
- Recheck the reasoning.

Construction of a square root

$$GI = \sqrt{GH}$$

$$z^2 = az + b^2 (a > 0)$$

$$oM = oN + NM$$

$$as \quad VM = \sqrt{b^2 + o^2} \quad and \quad oN = \frac{1}{2}a$$

$$0M = \frac{\alpha}{2} + \sqrt{\frac{b^2 + \alpha^2}{4}}$$

It follows:
$$OM^{2} = \frac{0^{2}}{5} + \frac{1}{5} + \frac{9^{2}}{5} + \frac{1}{4} = \frac{1}{5}$$

$$OM^{2} = \frac{0^{3}}{5} + \frac{1}{5} + \frac{1}{4} + \frac{1}{4} = \frac{1}{5}$$

$$OM^{2} = \frac{0^{3}}{2} + \frac{1}{5} + \frac{1}{4} + \frac{1}{4} = \frac{1}{5}$$
i.e. $\frac{1}{5}$

$$i = OM^2 = O(\frac{9}{2} + 7)b^2 + \frac{9}{4} + \frac{1}{6}$$

Annifue set
$$z = om$$
: $Z = az + b$

$$z^2 = az + b^2 (a > 0)$$

$$z = OM$$

Snell-Descartes law -Law of refraction-

$$\frac{\sin(\theta_2)}{\sin(\theta_1)} = \frac{v_2}{v_1} = \frac{n_1}{n_2}$$

$$n_1 \times \sin(\theta_1) = n_2 \times \sin(\theta_2)$$

Descartes would code a Rover

Q E

Programming Resources Classroom Hardware

Programming

Get to the programming interface you want by clicking on the cards.

Arduino

Programming interface for the Arduino board

Find out more

Micro:bit

Programming interface for the BBC micro:bit board

Find out more

Python

Programming Interface for Python 3 designed for education.

Find out more

Adacraft BETA

Interface based on Scratch enabling initiation to artifical intelligence and links to programming boards.

Find out more

STM32

Programming interface for the ST NUCLEO-WB55RG

Find out more

ESP32

Programming interface for ESP32 boards (Wemos D1R32, NodeMCU, Huzzah32, ...)

Find out more

TI-83 Premium CE BETA Edition Python

Programming interface for calculator and cards BBC micro:bit or TI Innovator™ Hub

Find out more

QuickPi

Programming interface for the QuickPl board

Find out more

Web BETA

Interface that allows the initiation to the creation of web page using HTML, CSS and JS.

Problem: Recognize a right angle on a colorized path

Sub-problems:

- ► Validate the path color.
- Stop when the color isn't the same anymore.
- ► Rotate 90°.
- Continue straight forward if the color is correct.

Preamble activity:

▶ Write a Python function that make the Rover draw a right triangle


```
EDITOR: PPARK
   ti_rover module
Drive I/O Settings Commands
1:import ti_rover as rv
2:forward(distance)
                            unit
3:backward(distance)
                            unit
4:left(angle)
                         degrees
5:right(angle)
                         degrees
6:stop()
7:resume()
8:stay(time)
                         seconds
9: to_xy(x,y)
0↓to_polar(r,theta)
                       ∠ degrees
 Esc
      Modul
```

Preamble activity:

▶ Write a Python function that make the Rover draw a right triangle

<u>Problem</u>: Recognize a right angle on a colorized path

Sub-problems

► Validate the path color.


```
ÉDITEUR : COUL1
   LIGNE DU SCRIPT 0017
def reco():
• global r,g,b
••while a!=1:
  **rv.color_off()
  **r=rv.red_measurement()
  **q=rv.qreen_measurement()
  **b=rv.blue_measurement()
  **rv.color_rgb(r,q,b)
  **a=int(input("couleur OK?"))
  **sleep(3)
· · · rv.color_off()
••return r.q.b
def repro():
**r,g,b=reco()
··a=int(input("reproduire la cou
     leur?"))
• if a==1:
***rv.color_rgb(r,g,b)
  ••sleep(3)
  **rv.color_off()
****rv.color_off()
Fns... a A # Outils Exéc Script
```

Problem: Recognize a right angle on a colorized path

Sub-problems

- ► Validate the path color.
- ► Rotate 90°.

Problem: Recognize a right angle on a colorized path

Sub-problems:

- ► Validate the path color.
- ► Rotate 90°.
- Continue straight forward if the color is correct.


```
ÉDITEUR : COUL1
                               . 0
   LIGNE DU SCRIPT 0038
def avance(d):
··reco()
* * r1=r
• • q1=q
• • b1=b
••while r1>=0.8*r and r1<=1.2*r
      and g1>=0.8*g and g1<=1.2*
     q and b1>=0.8*b and b1<=1.2
     *b:
····rv.forward(10)
****r1=rv.red_measurement()
****g1=rv.green_measurement()
****b1=rv.blue_measurement()
··rv.stop()
**rv.backward(0.8)
**if d=="d":
••••rv.right(90)
··else:
••••rv.left(90)
**rv.forward(0.3)
Fns... a A # Outils Exéc Script
```

How to register for a webinar

https://tiedtech.yello.co/external/events_cent_ral

THANK YOU!