

Natural number biased?
A technology-aided identification of profiles with respect to rational numbers understanding.

Florian Stampfer

Audience Response Systems (ARS)

- ArsNova (3600 Teacher, 72000 students)
- Live Feedback
- Live Assessment
- Innovative Types of Questions
- Peer Instruction
- Inverted Classroom

Audience Response Systems (ARS)

- ArsNova (3600 Teacher, 72000 students)
- Live Feedback
- Live Assessment
- Innovative Types of Questions
- Peer Instruction
- Inverted Classroom
- socrative
- Fast assessment of learning of all students in the class.
- No student sign-up.
- Provides downloadable data.
- It's free and easy to use.
- The teacher needs to create the Quiz content, which can take time. (Source)

Audience Response Systems (ARS)

- ArsNova (3600 Teacher, 72000 students)
- Live Feedback
- Live Assessment
- Innovative Types of Questions
- Peer Instruction
- Inverted Classroom
- socrative
- Fast assessment of learning of all students in the class.
- No student sign-up.
- Provides downloadable data.
- It's free and easy to use.
- The teacher needs to create the Quiz content, which can take time. (Source)
- kahhot!
- ...

Why it all started . . . (Griin and zeielis 2009)

- Scalable exams: Automatic generation of a large number of different exams in order to provide an individual test to each student.
- Associated self-study materials: Collections of exercises and solutions from the same pool of examples.
- Joint development: Development and maintenance of a large pool of exercises in a multi-author and cross-platform setting.
\longrightarrow abstract task format . . .

... with many export possibilities

Task Format

- first version: $\operatorname{AT}_{E} \mathrm{X}$-based variant in the form of so-called Sweave files (ending mostly Rnw originally Rnoweb)
- R-code linked to $\mathbb{L T}_{E} X$-commands
- in practice: during the R program's runtime, the selected R outputs are combined with the $\Delta T_{E} X$-commands to form a $\angle T_{E} X$-file

Task Format

- first version: ${ }^{4} T_{E} X$-based variant in the form of so-called Sweave files (ending mostly Rnw originally Rnoweb)
- R-code linked to $\mathbb{L T}_{E} X$-commands
- in practice: during the R program's runtime, the selected R outputs are combined with the $\Delta T_{E} X$-commands to form a $\Delta T_{E} X$-file
- later versions: additionally a markdown-based variant in the form of so-called R markdown-files (suffix Rmd stands for \boldsymbol{R} markdown)
- Markdown code is created during the runtime of the R program

Concrete

Structure Rnw file:
<<echo=FALSE, results=hide>>= \#\# DATA GENERATION
...
©
\begin\{question\} }
asd
\end\{question\} }
\begin\{solution\} }
asd
\end\{solution\} }
\%\% META-INFORMATION
..

Structure Rmd file:

- ' $\{r, e c h o=F A L S E\}$
\#\# DATA GENERATION

Question
========
. . .

Solution
========

META-INFORMATION

A very simple example (1)

Question
========
In which month does spring start?

Answerlist

* February
* March
* April
* May

Solution
========
March
META-INFORMATION
================
extype: schoice
exsolution: 0100

A very simple example (2)

```
```{r,echo=FALSE}
DATA GENERATION
questions = c("February","March", "April", "May")
solutions =c(0,1,0,0)
explanation= "March: Spring starts in March since ..."
```

Question
======
In which month does spring start?
`` $\{r$, echo=FALSE, results="asis"\}
answerlist (questions, markup="markdown")

Solution
========
`r explanation

META-INFORMATION
======
extype: schoice
exsolution: 'r mchoice2string(solutions)

## Illustrative example - Code

- ' $\{r$, echo=FALSE $\}$
\#\# data generation
z <- c(4,9,2,7)
$\mathrm{x}=\mathrm{z}[[1]] / \mathrm{z}[[2]] ; \mathrm{y}=\mathrm{z}[[3]] / \mathrm{z}[[4]]$
zahl1=paste0("\$<br>frac\{",z[1],"\}\{",z[2],"\}\$");zah12=paste0("\$<br>frac\{",z[3],"\}\{",z[4],"\}\$")
TXT= paste0("Which number is larger: ",zahl1," or ", zahl2," ?")
questions= c(pasteO(zahl1," is larger"),pasteO(zahl2," is larger"),"Equally large")
solutions $=c(x>y, x<y, x==y)$
explanation=paste0(questions[solutions]," since $\$$ ",z[1],"<br>cdot",z[4],"=",z[1]*z[4], c(">", "<","=") [solutions],z[2]*z[3],"=",z[2],"<br>cdot",z[3],"\$ ist.")

Question
========
`r TXT`

- `\{r, echo=FALSE,results="asis"\}
answerlist(questions,markup="markdown")

Solution
========
`r explanation META-INFORMATION ================ extype: schoice exsolution:`r mchoice2string(solutions)`
exname: size

## Illustrative example - pdf

## 1. Problem

Which number is larger: $\frac{4}{9}$ or $\frac{2}{7}$ ?
(a) $\frac{4}{9}$ is larger
(b) $\frac{2}{7}$ is larger
(c) equally large

```
Solution
\(\frac{4}{9}\) is larger since \(4 \cdot 7=28>18=9 \cdot 2\).
```


## Illustrative example - docx

## 1. Question

Which number is larger: $\frac{4}{9}$ or $\frac{2}{7}$ ?
(a) $\frac{4}{9}$ is larger
(b) $\frac{2}{7}$ is larger
(c) equally large

Solution<br>${ }_{9}^{4}$ is larger since $4 \cdot 7=28>18=9 \cdot 2$.

## Illustrative example - html

## Exam 1

## 1. Question

Which number is larger: $\frac{4}{9}$ or $\frac{2}{7}$ ?
a. $\frac{4}{9}$ is larger
b. $\frac{2}{7}$ is larger
c. equally large

## Solution

$\frac{4}{9}$ is larger since $4 \cdot 7=28>18=9 \cdot 2$.

## Illustrative example - randomization

- ' $\{r$, echo=FALSE $\}$
\#\# DATA GENERATION
z <- c(4,9,2,7)
$\mathrm{x}=\mathrm{z}[[1]] / \mathrm{z}[[2]] ; \mathrm{y}=\mathrm{z}[[3]] / \mathrm{z}[[4]]$
zahl1=paste0("\$<br>frac\{",z[1],"\}\{",z[2],"\}\$");zah12=paste0("\$<br>frac\{",z[3],"\}\{",z[4],"\}\$")
TXT= paste0("Which number is larger: ",zahl1," or ", zahl2," ?")
questions= c(pasteO(zahl1," is larger"),pasteO(zahl2," is larger"),"Equally large")
solutions $=c(x>y, x<y, x==y)$
explanation=paste0(questions[solutions]," since $\$$ ",z[1],"<br>cdot",z[4],"=",z[1] $z$ [4], c(">", "<","=") [solutions],z[2]*z[3],"=",z[2],"<br>cdot",z[3],"\$ ist.")

Question
========
`r TXT`

- ` \{r, echo=FALSE,results="asis"\}
answerlist(questions,markup="markdown")

Solution
========
`r explanation META-INFORMATION ================ extype: schoice exsolution:`r mchoice2string(solutions)
exname: size

## Illustrative example - randomization

```
`` ` {r,echo=FALSE}
DATA GENERATION
z <- sample(1:20,4,replace=TRUE)
x = z[[1]]/z[[2]];y = z[[3]]/z[[4]]
zahl1=paste0("$\\frac{",z[1],"}{",z[2],"}$");zahl2=paste0("$\\frac{",z[3],"}{",z[4],"}$")
TXT= paste0("Which number is larger: ",zahl1," or ", zahl2," ?")
questions= c(paste0(zahl1," is larger"),paste0(zahl2," is larger"),"Equally large")
solutions=c (}x>y,x<y,x==y
explanation=paste0(questions[solutions]," since $",z[1],"\\cdot",z[4],"=",z[1]*z[4],
c(">","<","=")[solutions],z[2]*z[3],"=",z[2],"\\cdot",z[3],"$ ist.")
Question
========
` \(r\) TXT
- ` \{r, echo=FALSE,results="asis"\}
answerlist(questions, markup="markdown")
```


## Solution

========
'r explanation
META-INFORMATION
================
extype: schoice
exsolution: ‘r mchoice2string(solutions)’
exname: size

## Illustrative example - randomization - RShiny

http://fachdidaktik-mathematik.uibk.ac.at:3838/dimma/mini/?examName=IETT

# Task formats (extype) 

- num
- schoice/mchoice
- string
- cloze ( $\longrightarrow$ exclozetype)


## Task formats (extype)

- num: exsolution number (possibly extol)
- schoice/mchoice: exsolution 00010 (mchoice2string)
- string: exsolution string
- cloze ( $\longrightarrow$ exclozetype): exsolution exs|exs|...|


## Create tasks - exams2xyz

$$
x y z \in\{p d f, \text { html, pandoc, openolat, arsnova, moodle }\} \cup\{\text { dimma }\}
$$

## Examples

```
require(exams)
```

exams2html("illustrativeExample.Rmd")
exams2pdf("illustrativeExample.Rmd",encoding = "utf8")
exams2pandoc("illustrativeExample.Rmd", encoding = "utf8") (default setting is docx)

## WebApp

## Input

- exams tasks


## Output

- Data frame (correctness, response time, given answer, ... )


## Illustrative example - WebApp

$\square$ universität echo-app   innsbruckImpressum   Datenschutz
Which number is larger: $\frac{4}{9}$ or $\frac{2}{7}$ ?
$\qquad$$\frac{4}{9}$ is larger   $\frac{2}{7}$ is larger   equally large

WebApp: echo-app.org

Dummy-Code: SHMONV

## Summary Workflow



What comes next...


## Natural number biased?

A technology-aided identification of profiles with respect to rational numbers understanding.

Florian Stampfer

## What is the Natural Number Bias ?

How many num-
bers lie between
1.9 and $1.40 ?$

Order these numbers: $\frac{5}{6}, 1, \frac{1}{4}, \frac{4}{3}$.

Which num-
ber is missing:
$0.36-0.2=\ldots ?$

Write down
a number between $\frac{1}{4}$ and $\frac{3}{4}$.

Which number is larger: 4.4 and 4.50 ?

Do you think that $50 \cdot \frac{3}{2}$ is more or less than 50?

## What is the Natural Number Bias ?



## What is the Natural Number Bias ?



## Natural Number Bias

The whole number bias thus refers to a robust tendency to use the singleunit counting scheme to interpret instructional data on fractions. Ni and Zhou (2005), p, 28

The natural number bias is described as the (inappropriate) application of natural number features in rational number tasks. Van Hoof, Verschaffel, and Van Dooren (2015), p. 40

## Study 1: Western Austria

## Study population

- 318 pre-service primary teachers (286 female) of two academic years
- Western Austria (Tyrol and Vorarlberg): Three colleges for teacher education (Pädagogische Hochschulen)
- Before any course on rational numbers
- Conducted in spring 2017 from March to June


## Test items

- Rational Number Sense Test: 83 items
- Aspects: 15 density, 45 size, 23 operations
- Congruency: 24 congruent and 59 incongruent items
- 5 items on demographic data (gender, secondary school types (2), country of graduation, math grade)


## Results of the study in Western Austria (1)

- accuracies and response times: clustering mixed-type data


## Results of the study in Western Austria (1)

- accuracies and response times: clustering mixed-type data

group	Strong	NNB	Weak
number	122	125	71

## Results of the study in Western Austria (1)

- accuracies and response times: clustering mixed-type data
- dimension reduction: 83 binary variables to 2 dimensions using homogeneity analysis


## Results of the study in Western Austria (1)

- accuracies and response times: clustering mixed-type data
- dimension reduction: 83 binary variables to 2 dimensions using homogeneity analysis



- Dimension $1 \approx$ Accuracy
- Dimension $2 \approx$ NNB

Results of the study in Western Austria (2)


Size


Operations


## Study 2: University of Potsdam

- Survey (pre/post) by means of WebApp of the students in the teacher training course Mathematics for the Primary School at the University of Potsdam
- Pre-Test: Question set with 83 exercises on the three aspects density, size, operations in the variants congruent and incongruent ; some demographic data; Code for Sample Pairing: 47 (14)
- Post-Test: Question set with 46 exercises on the three aspects density, size, operations in the variants congruent and incongruent ; FEMOLA $1^{1}$ with 33 items; Code for sample pairing: 20 (14)

[^0]
## Results from Potsdam (M1)



group	Strong	NNB	Weak
number	24	19	4

## Results from Potsdam (M1)



group	Strong	NNB	Weak
number	12	2	0

Dimension 1

## Results from Potsdam (M1+2)



	Strong (M2)	NNB (M2)	Weak (M2)
Strong (M1)	12	0	0
NNB (M1)	2	0	0
Weak (M1)	0	0	0

Results from the talk at the $T^{3}$ Sharing Inspiration

## Results from the talk at the $T^{3}$ Sharing Inspiration



group	Strong	NNB	Weak
number	2	0	0

## Discussion

- students in Western Austria show tendencies for NNB
- (also) students in Potsdam show tendencies for NNB
- $\mathrm{T}^{3}$ Sharing Inspiration participants show tendencies for NNB ?!?


## Outlook

- valuable element of the course (orientation for students and lecturer) $\longrightarrow$ adapt lecture
- near future: profile-dependent learning opportunities in technical education
- far future: ...


## Literature

Grün, Bettina, and Achim Zeileis. 2009. 'Automatic Generation of Exams in R'. Journal of Statistical Software 29 (10): 1-14. https://doi.org/10.18637/jss.v029.i10.

Ni, Yujing, and Yong-Di Zhou. 2005. 'Teaching and Learning Fraction and Rational Numbers: The Origins and Implications of Whole Number Bias'. Educational Psychologist 40 (1): 27-52. https://doi.org/10.1207/s15326985ep4001_3.

Van Hoof, Jo, Lieven Verschaffel, and Wim Van Dooren. 2015. 'Inappropriately Applying Natural Number Properties in Rational Number Tasks: Characterizing the Development of the Natural Number Bias Through Primary and Secondary Education'. Educational Studies in Mathematics 90 (1): 39-56. https://doi.org/10.1007/s10649-015-9613-3.

Zeileis, Achim, Nikolaus Umlauf, and Friedrich Leisch. 2014. 'Flexible Generation of E-Learning Exams in R: Moodle Quizzes, OLAT Assessments, and Beyond'. Journal of Statistical Software 58 (1): 1-36. https://doi.org/10.18637/jss.v058.i01.


[^0]:    ${ }^{1}$ Questionnaire for recording the motivation for the choice of teacher training

