

Natural number biased?

A technology-aided identification of profiles with respect to rational numbers understanding.

Florian Stampfer

Audience Response Systems (ARS)

- ArsNova (3600 Teacher, 72000 students)
 - Live Feedback
 - Live Assessment
 - Innovative Types of Questions
 - Peer Instruction
 - Inverted Classroom

Audience Response Systems (ARS)

- ArsNova (3600 Teacher, 72000 students)
 - Live Feedback
 - Live Assessment
 - Innovative Types of Questions
 - Peer Instruction
 - Inverted Classroom
- socrative
 - Fast assessment of learning of all students in the class.
 - No student sign-up.
 - Provides downloadable data.
 - It's free and easy to use.
 - The teacher needs to create the Quiz content, which can take time. (Source)

Audience Response Systems (ARS)

- ArsNova (3600 Teacher, 72000 students)
 - Live Feedback
 - Live Assessment
 - Innovative Types of Questions
 - Peer Instruction
 - Inverted Classroom
- socrative
 - Fast assessment of learning of all students in the class.
 - No student sign-up.
 - Provides downloadable data.
 - It's free and easy to use.
 - The teacher needs to create the Quiz content, which can take time. (Source)
- kahhot!

Why it all started ... (Grün and Zeileis 2009)

- *Scalable exams:* Automatic generation of a large number of different exams in order to provide an individual test to each student.
- Associated self-study materials: Collections of exercises and solutions from the same pool of examples.
- *Joint development:* Development and maintenance of a large pool of exercises in a multi-author and cross-platform setting.

 \longrightarrow abstract task format . . .

... with many export possibilities (Zeileis, Umlauf, and Leisch 2014)

Task Format

- first version: LATEX-based variant in the form of so-called Sweave files (ending mostly *Rnw* originally **Rnow**eb)
 - *R*-code linked to LaTEX-commands
 - in practice: during the *R* program's runtime, the selected *R* outputs are combined with the <code>LATEX-commands</code> to form a <code>LATEX-file</code>

Task Format

- first version: LATEX-based variant in the form of so-called Sweave files (ending mostly *Rnw* originally **Rnow**eb)
 - *R*-code linked to LargeX-commands
 - in practice: during the *R* program's runtime, the selected *R* outputs are combined with the \Bare{T}_EX-commands to form a \Bare{T}_EX-file

- later versions: additionally a markdown-based variant in the form of so-called R markdown-files (suffix Rmd stands for R markdown)
 - Markdown code is created during the runtime of the *R* program

Concrete

Structure Rnw file:

```
<<echo=FALSE, results=hide>>=
## DATA GENERATION
. . .
0
\begin{question}
asd
\end{question}
\begin{solution}
asd
\end{solution}
%% META-INFORMATION
```

```
. . .
```

Structure Rmd file:

```
\sum \{r, echo=FALSE\}
## DATA GENERATION
. . .
* * *
Question
_____
. . .
Solution
_____
. . .
```

META-INFORMATION

A very simple example (1)

Question ======= In which month does spring start?	
Answerlist	
* February * March * April * May	
Solution	
March	
META-INFORMATION	
extype: schoice exsolution: 0100	

A very simple example (2)

```
```{r,echo=FALSE}
DATA GENERATION
questions = c("February","March", "April", "May")
solutions =c(0,1,0,0)
explanation= "March: Spring starts in March since ..."
````
```

Question ====== In which month does spring start?

```
```{r, echo=FALSE,results="asis"}
answerlist(questions,markup="markdown")
```
```

Solution

`r explanation`

META-INFORMATION

extype: schoice
exsolution: `r mchoice2string(solutions)`

Illustrative example - Code

```
```{r.echo=FALSE}
DATA GENERATION
z \leq c(4.9.2.7)
x = z[[1]]/z[[2]]; y = z[[3]]/z[[4]]
zahl1=paste0("$\\frac{",z[1],"}{",z[2],"}$");zahl2=paste0("$\\frac{",z[3],"}{",z[4],"}$")
TXT= paste0("Which number is larger: ".zahl1," or ". zahl2," ?")
questions= c(paste0(zahl1," is larger"),paste0(zahl2," is larger"),"Equally large")
solutions=c(x>y,x<y,x==y)</pre>
explanation=paste0(questions[solutions]," since $",z[1],"\\cdot",z[4],"=",z[1]*z[4],
c(">"."<"."=")[solutions],z[2]*z[3],"=",z[2],"\\cdot",z[3],"$ ist.")
Question
"r TXT"
```{r. echo=FALSE.results="asis"}
answerlist(questions,markup="markdown")
Solution
`r explanation`
META-INFORMATION
_____
extype: schoice
exsolution: `r mchoice2string(solutions)`
ovnamo. sizo
```

Illustrative example – pdf

1. **Problem**

Which number is larger: $\frac{4}{9}$ or $\frac{2}{7}$?

(a) $\frac{4}{9}$ is larger

(b) $\frac{2}{7}$ is larger

(c) equally large

Solution

 $\frac{4}{9}$ is larger since $4 \cdot 7 = 28 > 18 = 9 \cdot 2$.

Illustrative example – docx

1. Question

Which number is larger: $\frac{4}{9}$ or $\frac{2}{7}$?

(a)
$$\frac{4}{9}$$
 is larger

(b)
$$\frac{2}{7}$$
 is larger

(c) equally large

Solution

 $\frac{4}{9}$ is larger since $4 \cdot 7 = 28 > 18 = 9 \cdot 2$.

Illustrative example – html

Exam 1

1. Question

Which number is larger: $\frac{4}{9}$ or $\frac{2}{7}$?

a. $\frac{4}{9}$ is larger b. $\frac{2}{7}$ is larger c. equally large

Solution

 $\frac{4}{9}$ is larger since $4 \cdot 7 = 28 > 18 = 9 \cdot 2$.

Illustrative example - randomization

```
```{r.echo=FALSE}
DATA GENERATION
z \leq c(4.9.2.7)
x = z[[1]]/z[[2]]; y = z[[3]]/z[[4]]
zahl1=paste0("$\\frac{",z[1],"}{",z[2],"}$");zahl2=paste0("$\\frac{",z[3],"}{",z[4],"}$")
TXT= paste0("Which number is larger: ",zahl1," or ", zahl2," ?")
questions= c(paste0(zahl1," is larger"),paste0(zahl2," is larger"),"Equally large")
solutions=c(x>y,x<y,x==y)</pre>
explanation=paste0(questions[solutions]," since $",z[1],"\\cdot",z[4],"=",z[1]*z[4],
c(">","<","=")[solutions],z[2]*z[3],"=",z[2],"\\cdot",z[3],"$ ist.")
Question
"r TXT"
```{r. echo=FALSE.results="asis"}
answerlist(questions,markup="markdown")
Solution
`r explanation`
META-INFORMATION
_____
extype: schoice
exsolution: `r mchoice2string(solutions)`
ovnamo. sizo
```

Illustrative example - randomization

```
```{r.echo=FALSE}
DATA GENERATION
z <- sample(1:20,4,replace=TRUE)</pre>
x = z[[1]]/z[[2]]; y = z[[3]]/z[[4]]
zahl1=paste0("$\\frac{",z[1],"}{",z[2],"}$");zahl2=paste0("$\\frac{",z[3],"}{",z[4],"}$")
TXT= paste0("Which number is larger: ".zahl1," or ". zahl2," ?")
questions= c(paste0(zahl1," is larger"),paste0(zahl2," is larger"),"Equally large")
solutions=c(x>y,x<y,x==y)</pre>
explanation=paste0(questions[solutions]," since $",z[1],"\\cdot",z[4],"=",z[1]*z[4],
c(">"."<"."=")[solutions],z[2]*z[3],"=",z[2],"\\cdot",z[3],"$ ist.")
Question
"r TXT"
```{r. echo=FALSE.results="asis"}
answerlist(questions,markup="markdown")
Solution
`r explanation`
META-INFORMATION
_____
extype: schoice
exsolution: `r mchoice2string(solutions)`
ovnamo. sizo
```

Illustrative example - randomization - RShiny

http://fachdidaktik-mathematik.uibk.ac.at:3838/dimma/mini/?examName=IE-TTT

Task formats (extype)

- num
- schoice/mchoice
- string
- cloze (\longrightarrow exclozetype)

Task formats (extype)

- num: exsolution number (possibly extol)
- schoice/mchoice: exsolution 00010 (mchoice2string)
- string: exsolution string
- cloze (\longrightarrow exclozetype): exsolution exs[exs]...|

Create tasks – exams2xyz

 $xyz \in \{pdf, html, pandoc, openolat, arsnova, moodle\} \cup \{dimma\}$

Examples

```
require(exams)
exams2html("illustrativeExample.Rmd")
exams2pdf("illustrativeExample.Rmd",encoding = "utf8")
exams2pandoc("illustrativeExample.Rmd",encoding = "utf8")(default
setting is docx)
```

WebApp

Input

• exams tasks

Output

• Data frame (correctness, response time, given answer, ...)

Illustrative example – WebApp

WebApp: echo-app.org

Dummy-Code: SHMONV

Summary Workflow

What comes next . . .

Feedback to educator

Short Report Florian Stampler Sep 20, 2018, 09:15:00 AM

Overview scales

Diagree

chs ... perceived choice
 org... perceived choice
 org... perceived competence
 for ... production competence
 for ... production
 for ... p

Natural number biased?

A technology-aided identification of profiles with respect to rational numbers understanding.

Florian Stampfer

What is the Natural Number Bias ?

How many numbers lie between 1.9 and 1.40?

Order these num-
bers:
$$\frac{5}{6}$$
, 1, $\frac{1}{4}$, $\frac{4}{3}$.

Which number is missing: $0.36 - 0.2 = \dots$?

Write down a number between $\frac{1}{4}$ and $\frac{3}{4}$. Which number is larger: 4.4 and 4.50? Do you think that $50 \cdot \frac{3}{2}$ is more or less than 50?

What is the Natural Number Bias ?

How many num- bers lie betweenOrder these num- bers: $\frac{5}{6}$, 1, $\frac{1}{4}$, $\frac{4}{3}$.1.9 and 1.40?	Which num- ber is missing: $0.36 - 0.2 = \dots$?	congruent
--	---	-----------

Write down	Which num-	Do you think that	tua
a number	ber is larger:	50 $\cdot \frac{3}{2}$ is more	
between $\frac{1}{4}$ and $\frac{3}{4}$.	4.4 and 4.50?	or less than 50?	

What is the Natural Number Bias ?

How many num- bers lie between 1.9 and 1.40?	Order these num- bers: $\frac{5}{6}$, 1, $\frac{1}{4}$, $\frac{4}{3}$.	Which num- ber is missing: $0.36 - 0.2 = \dots$?
Write down a number between $\frac{1}{4}$ and $\frac{3}{4}$.	Which num- ber is larger: 4.4 and 4.50?	Do you think that $50 \cdot \frac{3}{2}$ is more or less than 50?
density	size	operations

The whole number bias thus refers to a robust tendency to use the singleunit counting scheme to interpret instructional data on fractions. Ni and Zhou (2005), p, 28

The natural number bias is described as the (inappropriate) application of natural number features in rational number tasks. Van Hoof, Verschaffel, and Van Dooren (2015), p. 40

Study 1: Western Austria

Study population

- 318 pre-service primary teachers (286 female) of two academic years
- Western Austria (Tyrol and Vorarlberg): Three colleges for teacher education (Pädagogische Hochschulen)
- Before any course on rational numbers
- Conducted in spring 2017 from March to June

Test items

- Rational Number Sense Test: 83 items
- Aspects: 15 density, 45 size, 23 operations
- Congruency: 24 *congruent* and 59 *incongruent* items
- 5 items on demographic data (gender, secondary school types (2), country of graduation, math grade)

• accuracies and response times: clustering mixed-type data

• accuracies and response times: clustering mixed-type data

group	Strong	NNB	Weak
number	122	125	71

- accuracies and response times: clustering mixed-type data
- dimension reduction: 83 binary variables to 2 dimensions using homogeneity analysis

- accuracies and response times: clustering mixed-type data
- dimension reduction: 83 binary variables to 2 dimensions using homogeneity analysis

- Dimension 1 \approx Accuracy
- Dimension 2 pprox NNB

Study 2: University of Potsdam

- Survey (pre/post) by means of WebApp of the students in the teacher training course Mathematics for the Primary School at the University of Potsdam
- Pre-Test: Question set with 83 exercises on the three aspects *density*, *size*, *operations* in the variants congruent and incongruent ; some demographic data; Code for Sample Pairing: 47 (14)
- Post-Test: Question set with 46 exercises on the three aspects density, size, operations in the variants congruent and incongruent; FEMOLA 1¹ with 33 items; Code for sample pairing: 20 (14)

¹Questionnaire for recording the motivation for the choice of teacher training

Results from Potsdam (M1)

group	Strong	NNB	Weak
number	24	19	4

Results from Potsdam (M1)

group	Strong	NNB	Weak
number	12	2	0

30/34

Results from Potsdam (M1+2)

	Strong (M2)	NNB (M2)	Weak (M2)
Strong (M1)	12	0	0
NNB (M1)	2	0	0
Weak (M1)	0	0	0

Results from the talk at the T³ Sharing Inspiration

Results from the talk at the T³ Sharing Inspiration

group	Strong	NNB	Weak
number	2	0	0

Discussion

- students in Western Austria show tendencies for NNB
- (also) students in Potsdam show tendencies for NNB
- T³ Sharing Inspiration participants show tendencies for NNB ?!?

Outlook

- valuable element of the course (orientation for students and lecturer) \longrightarrow adapt lecture
- near future: profile-dependent learning opportunities in technical education
- far future: ...

Literature

Grün, Bettina, and Achim Zeileis. 2009. 'Automatic Generation of Exams in R'. Journal of Statistical Software 29 (10): 1–14. https://doi.org/10.18637/jss.v029.i10.

Ni, Yujing, and Yong-Di Zhou. 2005. 'Teaching and Learning Fraction and Rational Numbers: The Origins and Implications of Whole Number Bias'. Educational Psychologist 40 (1): 27–52. https://doi.org/10.1207/s15326985ep4001_3.

Van Hoof, Jo, Lieven Verschaffel, and Wim Van Dooren. 2015. 'Inappropriately Applying Natural Number Properties in Rational Number Tasks: Characterizing the Development of the Natural Number Bias Through Primary and Secondary Education'. *Educational Studies in Mathematics* 90 (1): 39–56. https://doi.org/10.1007/s10649-015-9613-3.

Zeileis, Achim, Nikolaus Umlauf, and Friedrich Leisch. 2014. 'Flexible Generation of E-Learning Exams in R: Moodle Quizzes, OLAT Assessments, and Beyond'. Journal of Statistical Software 58 (1): 1–36. https://doi.org/10.18637/jss.v058.i01.